viernes, 14 de agosto de 2020

Física UBA XXI Guía 2.3. Estática

 3. Suponga que ahora el pintor se encuentra parado a 1,50 metros del extremo izquierdo de la tabla, pero que ahora la tabla no descansa sobre un andamio sino que está colgada y sostenidas de sus extremos por cuerdas verticales. ¿Cuáles serán las tensiones en las cuerdas?

 


 

Diagrama de fuerzas

 


 

Equilibrio ----- > ∑ F = 0 y ∑ M = 0

 

Suma de Fuerzas = TA + TB – Pp – Pt = 0

Momentos respecto de A = TB (1,5 m + 2m + 1,5 m)   – Pp 1,5 m - Pt (1,5 m + 1 m) = 0

 

Donde

Pp = peso del pintor = mp g = 75 kg 9,8 m/s2

Pt = peso de la tabla = mt g = 15 kg 9,8 m/s2

TA = tensión de la cuerda en A

TB = tensión de la cuerda en B

 

Reemplazando en la ecuación de momentos  y despejando TB

TB = (Pp 1,5 m + Pt 2,5 m)/5 m = (75 kg 9,8 m/s2  1,5 m + 15 kg 9,8 m/s2 2,5 m) / 5 m = 294 N ----- tensión derecha

 

Reemplazando en la ecuación de la fuerzas y despejando TA

TA = Pp + Pt – TB = 75 kg 9,8 m/s2 + 15 kg 9,8 m/s2  - 294 N = 588 N  ------------ tensión izquierda

 

4 comentarios:

  1. unas ganas de besarte el cerebro

    ResponderEliminar
  2. no me queda claro por que la tension de los extremos es un vector apuntando hacia arriba, se por que es un vector, pero no entiendo como saben que apunta hacia arriba, de los otros si se por que, agradezco la explicacion

    ResponderEliminar
  3. El enunciado dice " .. la tabla no descansa sobre un andamio sino que está colgada y sostenidas de sus extremos por cuerdas verticales ... "
    Sobre cada una de esas cuerdas hay una tensión que apunta hacia arriba.

    ResponderEliminar