Vectores
10. 10- Sabiendo que los vectores A y B son los dados en el ejercicio 4. Calcular
para cada caso el vector D que cumple:
(I)
A + D = B
(II)
A + B + D = F = (10; 10).
a)
A=(-3; 2) B=(-2; 5) (Vectores del ejercicio
4.)
(I)
A + D = B
A + D = ( -3 +
xD; 2 + yD)
-3 + xD = -2
------- > xD = -2 + 3 = 1
2 + yD = 5
--------- > yD = 5 – 2 = 3
------- > D = ( 1 ; 3)
(II) A + B + D = F = (10; 10).
A + B + D = ( -3 – 2 + xD; 2 + 5 + yD)
-3 – 2 + xD =
10 ---------- > xD = 10 + 3 +2 = 15
2 + 5 + yD = 10 ----------
> yD = 10 – 2 – 5 = 3
------- > D = ( 15 ; 3)
b)
A tal que |A|=2 θ = 240° B tal que |B|=3 θ = 135° (Vectores del ejercicio 4.)
Coordenadas cartesianas de los vectores A y B
Ax = |A| cos θ = 2 cos 240º = - 1
Ay = |A| sen θ = 2 sen 240º = - 1,73
Bx = |B| cos θ = 3 cos 135º = - 2,12
By = |B| sen θ = 3 sen 135º = 2,12
(I) A + D = B
A + D = ( -1 +
xD; -1,73 + yD)
-1 + xD = -2,12 -------
> xD = -2,12 + 1 = -1,12
-1,73 + yD = 2,12
--------- > yD = 2,12 + 1,73 = 3,85
------- > D = ( -1,12 ; 3,85)
(II) A + B + D = F = (10; 10).
A + B + D = ( -1 – 2,12 + xD; -1,73 + 2,12 + yD)
-1 – 2,12 + xD
= 10 ---------- > xD = 10 + 1 + 2,12 = 13,12
-1,73 + 2,12 + yD = 10 ---------- > yD = 10 + 1,73 - 2,12 = 9,61
-------
> D = (13,12 ; 9,61)
c) A = (-2; 2) B = (-5; 5) (Vectores del ejercicio
4.)
(I) A + D = B
A + D = ( -2 +
xD; 2 + yD)
-2 + xD = -5
------- > xD = -5 + 2 = -3
2 + yD = 5
--------- > yD = 5 – 2 = 3
------- > D = ( -3 ; 3)
(II) A + B + D = F = (10; 10).
A + B + D = ( -2 – 5 + xD; 2 + 5 + yD)
-2 – 5 + xD =
10 ---------- > xD = 10 + 2 + 5 = 17
2 + 5 + yD = 10 ----------
> yD = 10 – 2 – 5 = 3
------- > D = ( 17 ; 3)
No hay comentarios:
Publicar un comentario