viernes, 31 de mayo de 2024

Biofísica 3 Termodinámica (20) 22. Primer principio

Determine si los siguientes procesos se pueden efectuar tanto en forma reversible como irreversible. En caso afirmativo explique cómo sería el proceso ideal reversible.

 

a) Una expansión adiabática de un gas.

Expansión adiabática = sin intercambio de calor

El proceso puede ser reversible ó irreversible.

Proceso reversible

Se coloca un gas en un recipiente adiabático con pistón móvil, con un determinado peso fácil de remover lentamente (p.e granos de arena) sobre el pistón y se van quitando granos, permitiendo que el pistón se mueva hacia arriba (expandir el gas) o agregando granos para que el pistón baje (comprimir hasta la situación inicial).

 

b) Una compresión isobárica de un gas.

Compresión isobárica = presión constante

El proceso puede ser reversible ó irreversible.

Proceso reversible

Se coloca el gas un recipiente cerrado por un pistón móvil con un peso fijo sobre el pistón y se lo enfría lentamente, al disipar la energía en forma de calor, el gas se comprime (su volumen disminuye)

 

c) Un globo que se desinfla en contacto con el aire atmosférico.

El proceso es irreversible.

Si el globo tiene un orificio, el aire del globo tiende a salir. Este aire se mezcla con el de la atmósfera y resulta imposible devolverlo al globo

 

d) La mezcla, en un recipiente adiabático, de dos masas de agua a distinta temperatura.

El proceso es irreversible.

La mezcla de dos masas de agua a distinta temperatura en un recipiente adiabático es un proceso que termina con una sola masa de agua a la temperatura de equilibrio.

 

e) La condensación del vapor de agua que sale del pico de una pava con agua hirviendo, al entrar en contacto con el aire ambiente

El proceso es irreversible.

El vapor de agua sale al ambiente, se mezcla con las partículas del aire exterior y se condensa porque la temperatura del ambiente es menor que la del vapor (100 ºC)

 


jueves, 30 de mayo de 2024

Biofísica 3 Termodinámica (20) 21. Primer principio

Explique, aplicando el primer principio de la termodinámica, los siguientes fenómenos:

 

a) Un fósforo puede encenderse tanto raspándolo contra la caja como al ponerlo en contacto con la llama.

 

ΔU = Q – L (Primer principio)

 

Donde

ΔU = variación de la energía interna

Q = calor

L = trabajo

 

Si se raspa el extremo, el sistema recibe trabajo (L < 0) à la energía interna aumenta (ΔU  > 0) à  T alcanza la temperatura de combustión.

Si se acerca el fósforo a una llama, el sistema recibe calor (Q > 0) à la energía interna aumenta (ΔU  > 0) à  T alcanza la temperatura de combustión.

 

b) Una expansión rápida del gas contenido en una garrafa produce una disminución de su temperatura.

Al aumentar el volumen del gas, aumenta el trabajo entregado por el gas (L > 0) à la energía interna disminuye (ΔU  < 0) à  T disminuye.

 

c) Al frotar rápidamente dos ramas secas se produce una llama. ¿Por qué este procedimiento debe hacerse rápidamente?

Frotando rápidamente se le entrega trabajo, el sistema recibe trabajo (L < 0) à la energía interna aumenta (ΔU  > 0) à  T alcanza la temperatura de combustión.

Debe hacerse rápidamente para que las ramas no intercambien calor (Q = 0) con el medio ambiente

 

d) Si se agita un recipiente de telgopor lleno de hielo picado, el hielo se derrite

El recipiente de telgopor es adiabático (Q = 0).

Al agitar el hielo se le entrega energía cinética a las partículas de hielo, trabajo para el sistema, el sistema recibe trabajo ( L < 0) à la energía interna aumenta (ΔU  > 0) à  T aumenta la temperatura hasta la temperatura de fusión y comienza a cambiar de estado del hielo.

 

miércoles, 29 de mayo de 2024

Biofísica 3 Termodinámica (20) 20. Primer principio

Indique si los siguientes sistemas termodinámicos son cerrados, abiertos o aislados: una nube, un ratón vivo, un fragmento de roca en el espacio exterior, el refrigerador de la heladera, café en un termo.

 

Definición

Sistema cerrado = puede intercambiar energía pero no materia con el exterior
Sistema abierto = puede intercambiar tanto materia como energía con el exterior
Sistema aislado = no intercambia ni materia ni energía con su entorno

 

Una nubesistema abierto

 

Intercambia energía con el exterior

absorbe calor del agua

 

Intercambia materia con el exterior

los cambios de tamaño se deben a la pérdida o ganancia de agua en suspensión

 

 

Un ratón vivo: sistema abierto

 

Intercambia energía con el exterior

pierde o gana calor (energía) según la temperatura del medio ambiente y gana energía en forma de energía química de los alimentos

Intercambia materia con el exterior

ingiriendo agua, alimentos y oxígeno y expulsado los sobrantes en parte en las excreciones y con la exhalación.

 

 

Un fragmento de roca en el espacio exterior: sistema cerrado

 

Intercambia energía con el exterior

energía en forma de ondas electromagnéticas (radiación solar)

 

No intercambia materia con el exterior

a menos que sea impactado por otro fragmento de roca (meteorito)

 

 

 

El refrigerador de la heladera: sistema cerrado

 

Intercambia energía con el exterior

energía eléctrica para funcionar

 

No intercambia materia con el exterior

a menos que se ingrese/ egrese de alimentos/ o cualquier otra cosa

 

 

Café en un termo: sistema aislado

 

No intercambia energía (calor) con el exterior.

 

No intercambia materia con el exterior

 

 

 

martes, 28 de mayo de 2024

Biofísica 3 Termodinámica (20) 19. Transmisión de calor

Se quiere utilizar energía solar para calentar un tanque con 1000 litros de agua desde 20 ºC a 60 ºC. Para ello se utilizan 9 m2 de paneles que absorben la radiación solar incidente y la trasmiten al tanque por conducción, prácticamente sin pérdidas. ¿Cuántas horas de sol se requieren, si la irradiación es en promedio de 400 W/m2 y los paneles solares tienen un coeficiente de absorción 0,75?

 

a. Calor necesario para calentar el agua

 

Q = m ce (Tf – Ti)

 

donde

Q = calor necesario

m = masa = δ V

δ = densidad = 1 gr/cm3

V = volumen = 1000 ltr (1 dm3 / ltr) (1000 cm3 / dm3) = 10^6 cm3

ce = calor especifico del agua = 1 cal/gr ºC

Tf = temperatura final = 60 ºC

Ti = temperatura inicial = 20 ºC

 

Reemplazando

Q = 1 gr / cm3 10^6 cm3 1 cal/gr ºC (60ºC – 20ºC) = 4 x 10^7 cal (4,187 J / 1 cal) = 1,67 x 10^8 J

 

b. Potencia colectada por los paneles solares

 

Pot = Pp A e 

 

Donde

Pot = potencia = Q / t

Q = calor necesario = 1,67 x 10^8 J

t = tiempo

Pp = potencia promedio = 400 W/m2

A = área = 9 m2

e = eficiencia = 75 %

 

Reemplazando y despejando t

 t = Q / (Pp A e) = 1,67 x 10^8 J / (400 W/ m2  9 m² 75%) = 62030 seg = 17,23 h

 

lunes, 27 de mayo de 2024

Biofísica 3 Termodinámica (20) 18. Transmisión de calor

La potencia radiante emitida por cada m2 de la superficie de un cuerpo que está a una temperatura de 1000 K es 34 kW/m2 ¿Cuál es su coeficiente de emisión o emisividad?, ¿Y su coeficiente de absorción?

 

Pot = σ ε A T^4 (Ley de Stefan-Boltzman)

 

Donde

Pot = Potencia = 34 kW/m2 = 34 x 10^3 W/m2

σ = constante de Boltzman = 5,67 x 10^-8 W/m² K4

ε = emisividad

A = área = 1

Ttemperatura = 1000 K

 

Reemplazando y despejando ε

ε = 34 x 10^3 W/m/ (5,67 x 10^-8 W/m² K 1   (1000 K)^4) =  0,6

 

 coeficiente de emisión = emisividad = coeficiente de absorción

 

domingo, 26 de mayo de 2024

Biofísica 3 Termodinámica (20) 17. Transmisión de calor

Calcule la energía emitida por segundo en forma de radiación térmica por un cuerpo negro de 1 m2 a 300 K. Repita el cálculo si la temperatura es 3000 K y compare ambos valores.

 

Pot = σ ε A T^4 Ley de Stefan-Boltzman)

  

donde

σ = constante de Boltzman = 5,67 x 10^-8 W/m² K4

ε = emisividad = 1 (del cuerpo negro)

A = área = 1

T = temperatura

 

a. Potencia emitida para T = 300 K

 

Pot (300 K) = 5,67 x 10^-8 W/m² K4   1 * 1 m²  (300 K)^4 460  W

 

b. Potencia emitida para T = 3000 K

 

Pot (3000 K) = 5,67 x 10^-8 W/m² K4   1 * 1 m²  (3000 K)^4 4,6 x 10^6 W 

 

Comparando

Pot(3000 K) / Pot(300 K)  = 4,6 x 10^6 W / 4,6 x 10^2 W = 10^4

Pot(3000 K) = 1000 Pot (300 K)

 

sábado, 25 de mayo de 2024

Biofísica 3 Termodinámica (20) 16. Transmisión de calor

a) Calcule la cantidad neta de calor por hora que transfiere el cuerpo humano al medio ambiente por radiación un día que la temperatura exterior es 25 ºC. Suponga que la superficie corporal es del orden de 1,8 m2 y se comporta aproximadamente como un cuerpo negro a temperatura de 33 °C.

 

Pot = σ ε A T^4  (Ley de Stefan-Boltzman)


Donde

Pot = potencia

Σ = constante de Boltzman = 5,67 x 10^-8 W/m² K4

ε = emisividad del cuerpo negro = 1

A = área = 1,8 m²

T = temperatura

 

T = temperatura corporal = 33ºC + 273 ºC = 306 K

T = temperatura exterior (ambiente) = 25ºC + 273 ºC = 298 K

 

Pot neta = Pot absorbida por el cuerpo – Pot emita por el cuerpo

 

Pot(emitida)= 5,67 x 10^-8  W/m² K 1 * 1,8 m²  (306 K)^4 = 895 W

Pot(absorbida)= 5,67 x 10^-8 W/m² K4  1 * 1,8 m²  (298 K)^4 = 805 W

 

Pot(neta) = Pot(absorbida) – Pot(emitida) = 805 W – 895 W = -90 W = - 77,4 kcal/h

 

 

b) ¿Mediante qué otros mecanismos el cuerpo humano transfiere calor al ambiente? Explique.

El cuerpo humano puede transferir calor por convección, conducción y evaporación (el sudor).

Convección: el intercambio de calor ocurre entre el cuerpo y el aire que lo rodea. Principalmente a través de la piel, pero también en las vías respiratorias

Conducción: el intercambio de calor sucede entre los cuerpos en contacto, con lo que el sentido del flujo de calor depende de la temperatura de la piel y de la temperatura superficial de los objetos

Evaporación: es un mecanismo por el que el organismo, mojado, pierde calor exclusivamente (el flujo de calor va desde él al ambiente y no a la inversa). Normalmente tiene lugar a través de la evaporación del sudor. El fenómeno físico que hace que se pierda calor a través de la evaporación del sudor es el cambio de estado del agua del sudor a vapor. El agua necesita calor para pasar a la fase de vapor y se lo quita a la piel.


viernes, 24 de mayo de 2024

Biofísica 3 Termodinámica (20) 15. Transmisión de calor

Estime la cantidad de calor por hora que trasmite por conducción una frazada que cubre a una persona que se halla en una habitación a 0 °C. Considere que la superficie de la frazada en contacto con el cuerpo es 1 m2, el espesor de la frazada, 1 cm y su coeficiente de conductividad térmica, 8 10^-5 cal / cm.°C. seg.

(Nota: Suponga que las temperaturas de la cara interior y de la cara exterior de la frazada son 33 °C (temperatura de la piel) y 0 °C. ¿Es correcta esta aproximación?)

 

Q/Δt = k A ΔT / Δx (Ley de Fourier)


donde

Q = calor
Δt = intervalo de tiempo = 1 hora = 3600 s
k = constante de conductividad térmica =  8 x 10^-5 cal/cm °C s
A = sección  por la que se transporta el calor = 1 m = 10^4 cm2
ΔT = diferencia de temperatura entre los extremos = (33 ºC – 0 ºC) = 33 ºC
Δx = longitud  = 1 cm

Reemplazando

ΔQ = 8 x 10^-5 cal/cm °C s  10^4 cm2   33 ºC / 1 cm  3600 s = 95040 cal = 95 kcal


Es una aproximación, dado que al producirse un flujo de calor hacia la superficie exterior la temperatura exterior de la frazada aumenta.